

Comparing Variants of Strategic Ability

Wojtek Jamroga, University of Luxembourg (joint work with Nils Bulling, Clausthal University of Technology)

March 1, 2012, Dynamics in Logic II

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

LAMAS: Logical Aspects of Multi-Agent Systems

LAMAS 2012: 5th of June 2012 at AAMAS2012 (Valencia, Spain) http://icr.uni.lu/lamas2012/

<u>Outline</u>

- 1 Introduction
- 2 Basic Concepts
- 3 Main Result
- 4 Some Interesting Stuff
- 5 Conclusions

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

<u>Outline</u>

1 Introduction

- 2 Basic Concepts
- 3 Main Result
- 4 Some Interesting Stuff
- 5 Conclusions

Introduction

- Strategic logics: ATL, coalition logic, stit
- Basic issue: "Can agent a (coalition A) bring about φ ?"
- Semantic variants of ATL: encapsulate various notions of ability

Introduction

- Strategic logics: ATL, coalition logic, stit
- Basic issue: "Can agent a (coalition A) bring about φ ?"
- Semantic variants of ATL: encapsulate various notions of ability
- We study the relationship between standard variants of ATL on the level of valid sentences
- Surprisingly, nobody has studied it before

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Motivation

- "Hardcore" logicians: logic = set of validities
- Thus, by comparing validity sets we compare logics in the traditional sense

Motivation

- "Hardcore" logicians: logic = set of validities
- Thus, by comparing validity sets we compare logics in the traditional sense
- Validities capture general properties of games under consideration
- If two variants of ATL generate the same valid sentences then the underlying notions of ability induce the same kind of games

Motivation

- "Hardcore" logicians: logic = set of validities
- Thus, by comparing validity sets we compare logics in the traditional sense
- Validities capture general properties of games under consideration
- If two variants of ATL generate the same valid sentences then the underlying notions of ability induce the same kind of games
- First step towards devising algorithms for satisfiability checking

<u>Outline</u>

1 Introduction

2 Basic Concepts

- 3 Main Result
- 4 Some Interesting Stuff

5 Conclusions

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

ATL: Alternating-time Temporal Logic [Alur et al. 1997-2002]

- Temporal logic meets game theory
- Main idea: cooperation modalities

ATL: Alternating-time Temporal Logic [Alur et al. 1997-2002]

- Temporal logic meets game theory
- Main idea: cooperation modalities

 $\langle\!\langle A \rangle\!\rangle \Phi$: coalition A has a collective strategy to enforce Φ

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

ATL: Alternating-time Temporal Logic [Alur et al. 1997-2002]

- Temporal logic meets game theory
- Main idea: cooperation modalities

$\langle\!\langle A \rangle\!\rangle \Phi$: coalition A has a collective strategy to enforce Φ

 $\rightsquigarrow \Phi$ can include temporal operators: \bigcirc (next), \Diamond (sometime in the future), \Box (always in the future), \mathcal{U} (strong until)

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Example formulae:

• $\langle\!\langle robber \rangle\!\rangle$ \diamond open:

"The robber has a strategy to eventually get the vault open no matter how the other agents act"

Example formulae:

• $\langle\!\langle robber \rangle\!\rangle$ \diamond open:

"The robber has a strategy to eventually get the vault open no matter how the other agents act"

• $\langle\!\langle bank \rangle\!\rangle \Box \neg robbery:$

"The bank can protect itself against being robbed"

Example: Robots and Carriage

Example: Robots and Carriage

Definition (Strategy)

A strategy is a conditional plan.

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Definition (Strategy)

A strategy is a conditional plan.

We represent strategies by functions $s_a : St \to Act$.

Definition (Strategy)

A strategy is a conditional plan.

We represent strategies by functions $s_a : St \to Act$.

~ memoryless strategies

Definition (Strategy)

A strategy is a conditional plan.

We represent strategies by functions $s_a : St \to Act$.

→ memoryless strategies

Alternative: perfect recall strategies $s_a: St^+ \rightarrow Act$

Definition (Strategy)

A **strategy** is a conditional plan.

We represent strategies by functions $s_a : St \to Act$.

→ memoryless strategies

Alternative: perfect recall strategies $s_a : St^+ \rightarrow Act$

Semantics of ATL

 $M, q \models \langle\!\langle A \rangle\!\rangle \Phi$ iff there is a collective strategy s_A such that, for every path λ that may result from execution of s_A from q on, we have that $M, \lambda \models \Phi$.

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Example: Robots and Carriage

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Example: Robots and Carriage

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Example: Robots and Carriage

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Example: Robots and Carriage

Example: Robots and Carriage

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Example: Robots and Carriage

 $\mathsf{pos}_0 \to \langle\!\langle 1 \rangle\!\rangle \Box \neg \mathsf{pos}_1$

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Example: Robots and Carriage

$$\mathsf{pos}_0 \to \langle\!\langle 1 \rangle\!\rangle \Box \neg \mathsf{pos}_1$$

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

- Basic semantics of ATL assumes perfect information not very realistic
- Semantic variants for more realistic cases defined in (Jamroga 2003), (Jonker 2003), (Schobbens 2004), (Jamroga & van der Hoek 2004), (Agotnes 2004), ...
- Encapsulate different assumptions about agents and abilities

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Memory of agents:

Perfect recall (R) vs. imperfect recall strategies (r)

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Memory of agents:

Perfect recall (R) vs. imperfect recall strategies (r)

Available information:

Perfect information (I) vs. imperfect information strategies (i)

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Memory of agents:

Perfect recall (R) vs. imperfect recall strategies (r)

Available information:

Perfect information (I) vs. imperfect information strategies (i)

Success of strategies:

Objectively (i_o) vs. subjectively successful strategies (i_s)

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Example: Robbing a Bank

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Example: Robbing a Bank

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Example: Robbing a Bank

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Example: Poor Duck Problem

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

• $M, q \models \langle\!\langle A \rangle\!\rangle \gamma \approx$ extensive game

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

- $M, q \models \langle\!\langle A \rangle\!\rangle \gamma \approx$ extensive game
- A splits agents into proponents and opponents
- ⊨ and γ define the winning condition
 → infinite 2-player zero-sum game with binary payoffs

- $M, q \models \langle\!\langle A \rangle\!\rangle \gamma \approx$ extensive game
- A splits agents into proponents and opponents
- |= and γ define the winning condition
 → infinite 2-player zero-sum game with binary payoffs

- $M, q \models \langle\!\langle A \rangle\!\rangle \gamma \approx$ extensive game
- A splits agents into proponents and opponents
- |= and γ define the winning condition
 → infinite 2-player zero-sum game with binary payoffs
- Satisfiability

 mechanism design

- $M, q \models \langle\!\langle A \rangle\!\rangle \gamma \approx$ extensive game
- A splits agents into proponents and opponents
- |= and γ define the winning condition
 → infinite 2-player zero-sum game with binary payoffs
- Satisfiability \rightleftharpoons mechanism design
- Validity
 rightarrow general properties of games

<u>Outline</u>

1 Introduction

2 Basic Concepts

3 Main Result

4 Some Interesting Stuff

5 Conclusions

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Validities in Variants of ATL: Subsumption Graph

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Summary in Plain Words

In terms of general properties of games we get the following:

- Perfect information is a (strict) special case of imperfect information
- Perfect recall games are (strict) special case of memoryless games
- Information type has more impact than type of recall
- Properties of objective and subjective abilities of agents are incomparable

<u>Outline</u>

1 Introduction

- 2 Basic Concepts
- 3 Main Result
- 4 Some Interesting Stuff
- 5 Conclusions

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

$\blacksquare \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p} \leftrightarrow \mathsf{p} \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}$

Invalid in all variants with imperfect information

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

$\blacksquare \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p} \leftrightarrow \mathsf{p} \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}$

Invalid in all variants with imperfect information

$\ \, \langle \langle a \rangle \rangle (\Diamond \mathsf{p}_1 \land \Diamond \mathsf{p}_2) \leftrightarrow \langle \langle a \rangle \rangle \Diamond (\mathsf{p}_1 \land \langle \langle a \rangle \rangle \Diamond \mathsf{p}_2 \lor \mathsf{p}_2 \land \langle \langle a \rangle \rangle \Diamond \mathsf{p}_1)$ Invalid for imperfect recall

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

$\langle \langle a \rangle \rangle \Diamond \mathsf{p} \leftrightarrow \mathsf{p} \lor \langle \langle a \rangle \rangle \bigcirc \langle \langle a \rangle \rangle \Diamond \mathsf{p}$

Invalid in all variants with imperfect information

 $\ \ \, \neg \langle\!\langle \emptyset \rangle\!\rangle \Diamond \neg \mathsf{p} \leftrightarrow \langle\!\langle \operatorname{Agt} \rangle\!\rangle \Box \mathsf{p} \\ \text{Invalid for subjective ability}$

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

• $\langle\!\langle a \rangle\!\rangle \Diamond p \leftrightarrow p \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \Diamond p$ Invalid in all variants with imperfect information

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

$\blacksquare \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p} \leftrightarrow \mathsf{p} \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}$

Invalid in all variants with imperfect information

$\ \, \langle \langle a \rangle \rangle (\Diamond \mathsf{p}_1 \land \Diamond \mathsf{p}_2) \leftrightarrow \langle \langle a \rangle \rangle \Diamond (\mathsf{p}_1 \land \langle \langle a \rangle \rangle \Diamond \mathsf{p}_2 \lor \mathsf{p}_2 \land \langle \langle a \rangle \rangle \Diamond \mathsf{p}_1)$ Invalid for imperfect recall

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Some Interesting Stuff

Some (In)Validities

■ $\neg \langle\!\langle \emptyset \rangle\!\rangle \Diamond \neg p \leftrightarrow \langle\!\langle Agt \rangle\!\rangle \Box p$ Invalid for subjective ability

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

<u>Outline</u>

1 Introduction

- 2 Basic Concepts
- 3 Main Result
- 4 Some Interesting Stuff
- 5 Conclusions

Wojtek Jamroga and Nils Bulling · Comparing Variants of Strategic Ability

Conclusions

- All the basic semantic variants of ATL are different on the level of general properties they induce
- Strong pattern of subsumption
- Very natural when you see it, but by no means obvious before
- Some proofs nontrivial

Conclusions

- All the basic semantic variants of ATL are different on the level of general properties they induce
- Strong pattern of subsumption
- Very natural when you see it, but by no means obvious before
- Some proofs nontrivial

Non-validities more important than the inclusion results